Multimodal Integration of Micro-Doppler Sonar and auditory signals for Behavior Classification with convolutional Networks
نویسندگان
چکیده
The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance.
منابع مشابه
A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks
Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملDetection of schizophrenia patients using convolutional neural networks from brain effective connectivity maps of electroencephalogram signals
Background: Schizophrenia is a mental disorder that severely affects the perception and relations of individuals. Nowadays, this disease is diagnosed by psychiatrists based on psychiatric tests, which is highly dependent on their experience and knowledge. This study aimed to design a fully automated framework for the diagnosis of schizophrenia from electroencephalogram signals using advanced de...
متن کاملClassification of human activity on water through micro-Dopplers using deep convolutional neural networks
Detecting humans and classifying their activities on the water has significant applications for surveillance, border patrols, and rescue operations. When humans are illuminated by radar signal, they produce micro-Doppler signatures due to moving limbs. There has been a number of research into recognizing humans on land by their unique micro-Doppler signatures, but there is scant research into d...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of neural systems
دوره 23 5 شماره
صفحات -
تاریخ انتشار 2013